Quiz card – Possible strategies

Category	No.	Question	Answer (strategy)	Ref.
Breezy	1.	The three digits of a three-digit number add up to 25. How many such three-digit numbers are there?	6 799; 979; 997; 889; 898; 988	AMESA Mathematics Challenge 2006, Grade 7 Final Round
Breezy	2.	I multiplied two consecutive numbers (e.g. 4 and 5) on my calculator and got the answer 702. What is the sum of the two numbers?	53 $\sqrt{702} = 26,495 \dots$, therefore $26 \times 27 = 702$ and $26 + 27 = 53$	AMESA Mathematics Challenge 2004, Grade 7 Final Round
Breezy	3.	Split the number 18 into two whole numbers (e.g. 3 and 15). Now multiply these two numbers. What is the largest possible answer?	72	AMESA Mathematics Challenge 2004, Grade 7 Final Round
Breezy	4.	20 can be written as the sum of two squares, e.g. $20 = 4 + 16 = 2^2 + 4^2$ In how many different ways (ignore the order) can 85 be written as the sum of two squares?	2 ways $2^2 + 9^2 = 4 + 81$ $6^2 + 7^2 = 36 + 49$	AMESA Mathematics Challenge 2002, Grade 7 Final Round
Breezy	5.	How many two-digit numbers are there with both digits even?	20 20, 22, 24, 26, 28, (5) 40, 42, 44, 46, 48, (5) 60, 62, 64, 66, 68, (5) 80, 82, 84, 86, 88 (5)	AMESA Mathematics

Category	No.	Question	Answer (strategy)	Ref.
Breezy	6.	The sketch shows eight lolly sticks. If you must pick up the top one each time, in what order will you pick them up?	7; 1; 6; 4; 5; 2; 8; 3	AMESA Mathematics Challenge 2001, Grade 7 Final Round
Breezy	7.	What is the smallest ten-digit number that has exactly two digits that are the same and all other digits are different? Note: Numbers cannot start with zero!	1 002 345 678	Wits Mathematics Competition 2022 Grade 6/7 Final Round
Breezy	8.	The digits of the year 2020 add up to 4. In how many other years (starting from 1), before 2020, has this happened?	27 They are 4, 13, 22, 31, 40, 103, 112, 121, 130, 202, 211, 220, 301, 310, 400, 1003, 1012, 1021, 1030, 1102, 1111, 1120, 1201, 1210, 1300, 2002 and 2011. To avoid missing any it's helpful to break into cases and sub- cases. For example those numbers which are less than 4 digits (broken into the subcases of what is in the hundreds column), which numbers are four digits long and begin with a 1 and which are four digits long and begin with a 2	WITS Mathematics Competition 2020, Gr 6/7 Qualifying Round

Category	No.	Question	Answer (strategy)	Ref.
Breezy	9.	There are 60 learners in a class.	20	
		Always two students share a	There are as many boys as 'half the girls' (because they	tition nd
		desk. Every boy shares a desk	share desks). Boys are	compe al Roui
		with a girl. Exactly half the girls	therefore a third of the class.	atics C /6 Fina
		share a desk with a boy. How		athem rade 5
		many boys are in the class?		Wits Mi 2022 Gi
Breezy	10.	Terri's birthday is on 3	2021	b
		December. On 1 August 2012 she	She turned 12 in 2012	atics :021 alifvins
		was 11-years-old. In which year		athem ition 2 /6 Out
		will she have her 21st birthday?		Wits Ma Compet Grade 5
Breezy	11.	A running track is in the shape of	D	
		a hexagon with equal sides. Kerri	Break the hexagon into 12	
		started running from the start	half of each side. Count out	
		flag. She ran an anti-clockwise	4 of these.	
		direction (that is towards F) and		
		stopped one-third of the way		Лg
		around the track. At which point		ualifyi
		(A, B, C, D or E) did she stop?		5/6 Q
		E C B		Wits Mathematics Competition 2021 Grade

Category	No.	Question	Answer (strategy)	Ref.
Breezy	12.	The inter-school soccer league	14	
		consists of 8 teams. How many	Each team will play 7 other teams (a team cannot play	lenge J
		matches will each team play if	against itself), so each team plays 7 matches. However,	cs Chal Round
		every team plays against every	this is done twice (home and away).	ematio 7 Final
		other team twice – once at home		Math Brade
		and once away?		AMESA 2014, G
Breezy	13.	Mr Safe has a 4-digit combination	24	7
		that opens his lock. He	Make a systematic list, e.g. 3579: 3597. 3759: 3795.	Grade
		remembers that the four digits	3957; 3975, 9375; 9357, 9537	2014,
		are 3, 5, 7 and 9, but he has	Or: He has 4 choices for the first number, then 3 choices	lenge
		forgotten the correct order.	for the second, 2 for the third and 1 for the fourth.	cs Chal
		What is the most different	So, $4 \times 3 \times 2 \times 1$	ematio
		combinations that he must try to		. Math ound
		open the safe?		AMESA Final Ro

Category	No.	Question	Answer (strategy)	Ref.
So-So	14.	In the diagram, a corner of the shaded star touches the middle of each side of the large square.	$\frac{3}{4}$ The diagram can be split into four identical (up to rotation) squares. Each of these has $\frac{1}{4}$ shaded. So $\frac{3}{4}$ of each smaller square is unshaded and so $\frac{3}{4}$ of the original square is unshaded.	WITS Mathematics Competition 2020, Gr 6/7 Qualifying Round
So-So	15.	Today is a Monday. Thabo starts to read a book with 290 pages today. On Mondays he reads 25 pages and on every other day he reads 4 pages. On which day of the week does he finish reading the book?	Saturday Observe that Thabo reads a total of 49 pages a week. After six weeks (ending in a Sunday) he'd have read 296 pages if the book was long enough. The Saturday before he'd be on 292 pages and the Friday before on 288. Therefore he finishes on the sixth Saturday.	Wits Mathematics Competition 2022 Grade 6/7 Final Round

Category	No.	Question	Answer (strategy)	Ref.
So-So	16.	There are 14 people at a party. Every pair of people shakes hands exactly once. How many handshakes occur?	91 For each handshake there are 14 choices for the first person and 13 choices for the second person. So there are 14×13 choices. However, since we can choose the same pair of people in two different ways, the number of handshakes is $\frac{14 \times 13}{2} = 91$	Wits Mathematics Competition 2019 Grade 4/5 Final Round
So-So	17.	A painter takes two days to paint a room (all four walls and the ceiling). If he works at the same pace, how many days will he take to paint a room that is twice as wide, twice as long and twice as high?	8 days Take for e.g. a $2 \times 2 \times 2$ room. To paint each of the wall he will paint an area of 2×2 as well as another 2×2 area for the roof, therefore $5 \times (2 \times 2) = 20$. If you double all the measurements it will be 5(4 \times 4) = 80. 80 is four times more than 20. So it will take him four times longer to paint the bigger room.	AMESA Mathematics Challenge 2001, Grade 7 Final Round
So-So	18.	Check this number pattern: 1 = 1 × 1 1 + 3 = 2 × 2 1 + 3 + 5 = 3 × 3 1 + 3 + 5 + 7 = 4 × 4 Now calculate 1 + 3 + 5 + 7 + all the way up to + 97 + 99	2 500 50 × 50	AMESA Mathematics Challenge 2007, Grade 7 Final Round

Category	No.	Question	Answer (strategy)	Ref.
So-So	19.	What is the difference between the sum of the even numbers and the sum of the odd numbers from 1 to 100, both included?	50 $(2 + 4 + 6 + 8 + \dots + 98 + 100) - (1 + 3 + 5 + \dots + 97 + 99)$ $= (2 - 1) + (4 - 3) + (6 - 5) + \dots + (98 - 97) + (100 - 99) = 1 + 1 + 1 \dots 50 \text{ times}$	AMESA Mathematics Challenge 2008, Grade 7 Final Round
So-So	20.	What is the 83 rd number in the following pattern: 1 ; 3 ; 5 ; 7 ;?	165 n^{th} number = 2 × $n - 1$, so 83^{rd} number = 2 × $83 - 1$	AMESA Mathematics Challenge 2011, Grade 7 Final
So-So	21.	Consider the following pattern: $1^{3} + 2^{3} = 3^{2}$ $1^{3} + 2^{3} + 3^{3} = 6^{2}$ $1^{3} + 2^{3} + 3^{3} + 4^{3} = 10^{2}$ $1^{3} + 2^{3} + 3^{3} + 4^{3} + + 10^{3} = n^{2}$ What is the value of <i>n</i> ?	55 Note that 1 + 2 = 3; 1 + 2 + 3 = 6; 1 + 2 + 3 + 4 = 10 So <i>n</i> = 1 + 2 + 3 + 4 + 5 + + 10 = 55	AMESA Mathematics Challenge 2014, Grade 7 Final Round

Category	No.	Questi	on					Answer (strategy)	Ref.	
So-So	22.	The C numb	Dlymp ered	oic cor bibs fo	mmitte or eac	ee prii h of tl	nted ne	114 The first 9 athletes use a single digit per bib. The next	.022 Grade	
		athlet event 1. If 2 overa comp	tes co , start 34 dig Ill, hov eted?	mpeti ting fr gits w w mai	90 use two digits a bib. Which means after printing 99 bibs we'll have use 189 digits and have 45 'left'. As the next 900 will use three digits a bib we can see that our remaining digits are enough for another 15 bibs. A total of 99 + 15 = 114.	Wits Mathematics Competition 2(6/7 Qualifying Round				
So-So	23.	The p intege sum. equal betwe is the	oroduc ers is The so to six een th sum o	ct of t equal ame p k time e two of the	9 As the numbers are small this can be solved by trial and error. A more systematic approach is to use algebra. Call the numbers a and b and choose $a < b$. Then ab = 6b - 6a = 2a + 2b. 6b - 6a = 2a + 2b implies b = 2a. So subbing into $ab = 6b - 6a$ gives $2a^2 =$ $6a$ and $a^2 = 3a$. Which gives us $a = 3$ and $b = 6$.	Wits Mathematics Competition 2022 Grade 6/7 Qualifying Round				
So-So	24.	What table? 1 4	2 6	e valu 3 8	31	AMESA Mathematics Challenge 2012, Grade 7 Final Round				

Category	No.	Question	Answer (strategy)	Ref.
So-So	25.	 Which one of the following numbers will appear in the sequence: 2; 5; 10; 17; 26; 37;? (A) 901 (B) 902 (C) 903 (D) 904 (E) None of these 	(A)901 Look for structure and pattern! $N1 = 2 = 1 \times 1 + 1 N2$ = 5 = 2×2 + 1 N3 = 10 = 3×3 + 1 N4 = 17 = 4×4+ 1 Test the numbers! 30×30 + 1 = 901 is the only one which fits the pattern	AMESA Mathematics Challenge 2012, Grade 7 Final Round
So-So	26.	A series of 10 books were published at 2-year intervals. The sum of the publication years is 20 000. When was the first book published?	1991 The average year of publication was 2000. This would be the time midway between the publication of the fifth and sixth books. So the books were published in: 1991, 1993, 1995, 1997, 1999, 2001, 2003, 2005, 2007, and 2009.	Wits Mathematics Competition 2022 Grade 6/7 Final Round
So-So	27.	How many of the 5-digit numbers which consist of the five digits 1, 2, 3, 4 and 5 are divisible by all of 1, 2, 3, 4 and 5?	None To be divisible by 5, the last digit must be 5. But to be divisible by 2, the last digit must be 2 or 4. So none of these numbers can be divisible by 2 and 5, so none of them can be divisible by 1, 2, 3, 4, and 5.	AMESA Mathematics Challenge 2013, Grade 7 Final Round

Category	No.	Question	Answer (strategy)	Ref.
So-So	28.	Arnie, Bender and Cross are three robots. They are weighed two at a time. Here are the results: A + B = 12 kg B + C = 14 kg C + A = 16 kg How much will all three weigh together?	21 kg Add all together: 2A + 2B + 2C = 42, so A + B + C = 21	AMESA Mathematics Challenge 2013, Grade 7 Final Round
Fiendish	29.	Calculate: <u>1 + 3 + 5 + 7 ++ 97 + 99</u> <u>2 + 4 + 6 + 8 ++ 98 + 100</u>	$\frac{50}{51}$ Take special cases, be systematic, and notice the patterns: 1 number: $\frac{1}{2} = \frac{1}{2}$ 2 numbers: $\frac{1+3}{2+4} = \frac{4}{6} = \frac{2}{3}$ 3 numbers: $\frac{1+3+5}{2+4+6} = \frac{9}{12} = \frac{3}{4}$ Etc. Alternatively, if you know or develop some formulas: $\frac{50^2}{50 \times 51}$	AMESA Mathematics Challenge 2013, Grade 7 Final Round
Fiendish	30.	Xolile has a bag of marbles. He gave $\frac{1}{3}$ of them to Baba and then $\frac{1}{4}$ of the remaining marbles to Sam. If there are now 24 marbles in the bag, how many marbles did Xolile give to Baba?	16 marbles Suppose Xolile had x marbles. After giving $\frac{1}{3}$ to Baba, he had $\frac{2}{3}$ remaining; or $\frac{2}{3}$ of x. After giving $\frac{1}{4}$ of the remainder to Sam, he had $\frac{3}{4}$ of them left, or $\frac{3}{4}$ of $\frac{2}{3}$ of x which equals 24. So, $\frac{1}{2}$ of x equals 24, so $x = 48$. This means she gave Baba $\frac{1}{4}$ of 48	AMESA Mathematics Challenge 2013, Grade 7 Final Round

Category	No.	Quest	ion								Answer (strategy)	Ref.	
Fiendish	31.	Num	bers	are	arı	rang	jed	in t	he			403	
		follo	wing	patt	terr	าร:						3^{rd} number in <i>n</i> th row = 5 × $n - 2$, so 3^{rd} number in 81^{st}	, Grade 7
		1	2	3	4		5	6	ro	w í	1	$row = 5 \times 81 - 2$	2005,
		7	8	9	10) 1	1	12	ro	w 2	2		llenge
		13	14	15	16	51	7	18	ro	w 3	3		cs Cha
		•••	•••	•••	••	• •	••	•••	ro	w 4	4		ematic
		Who	ıt wi	ll the	thi	ird r	num	nber	' in				Mathe und
		row	81 b	e?									AMESA Final Ro
Fiendish	32.	All t	ne co	ounti	ng	num	ber	rs a	re			С	hal
		arra	nged	l in c	olu	mns	as	shc	wn	۱		Note that column G consists	de 7 Fi
		belo	w.									500 by 7 we get 71	4, Grao
		Δ	R	C		>	F	F	6	;		remainder 3. So 497 will be in column G, 498 will be in	e 201 [,]
		1	2	3	4		5	6	7	,		column A, 499 in column B and 500 in column C	alleng
		8	9	10	11	1	2	13	14	4			ics Cha
		15	16	17	18	3 1	9	20	21	1			nemat
			•••					•••		•			A Math
		In w	hich	colur	mn	is 5	00?						AMES/ Round
Fiendish	33.	<i>a</i> , <i>b</i> ,	c and	d ar	e fo	our a	djad	cent	dat	tes		В	
		in a c	alend	dar a	s sh	own	•					We know that $c - a =$	puno
		M	on T	ue W	/ed	Thu	Fri	S	at	Sun	ı	a - b = 7 so $c - a = d - b$. So $a + d = b + c$	inal R
													ide 7 F
					а c	b d							.4, Gra
											ge 201		
		Which statement is true for <i>any</i>											llen
		calendar?											tics Ch
		(A) a	+ c =	b + d		(E	3) a	+ <i>d</i> =	: <i>b</i> +	- с			hema
		(C) c	- <i>b</i> = .	a-d		(I) a	+ <i>b</i>	= c	+ d	,		A Mat
		(E) <i>d</i> -	• <i>a</i> = 0	;+b									AMES

Category	No.	Que	stion	1						Answer (strategy)	Ref.
Fiendish	34.	a, b,	, <i>c</i> a	nd <i>d</i>	are f	our a	tes	9			
		in a	cale	endar	as sl	nown	a + b + c + d = 52 a + (a + 1) + (a + 7)				
		1	Mon	Tue	Wed	Thu	Fri	Sat	Sun	+(a+8) = 52	
										4a = 36	
					a	b				a = 9	
					с 						rsion
		Who	at is	the	value	of a	if <i>a</i> +	<i>b</i> + <i>a</i>	c + d		ť's ve
		= 52	2?								Irnou
F : 1:1	25									10	Аа
Fiendish	35.	30 s	stud	lents	wro	te a	mat	hemo	itics	10	
		exa	ım c	out o	of 100) ma	rks. ⁻	The		The total number of marks scored was 30×50 = 1500. If	2022
		ave	rag	e sco	ore v	vas 5	0. TI	ne		x students passed then	tition Id
		ave	rag	e sco	ore c	of the	ose w	/ho		1500 = 60x + 45(30 - x) which solves to $x = 10$. This	smpe
		Das	sed	was	60 c	ind t	he av	vera	le	could also be solved via trial	ics Co ifying
		F SCO	re c	of the		vho f	منامط	was	/5	not familiar with algebra	lemat Qual
									43.	(trying different values for	Math e 6/7
			w m	iany	stua	ents	pass	ea		the number of passers).	Wits Grad
Fiendish	36.	The	e av	erag	e of	eleve	en nu	ımbe	rs is	44	inal
		8. If	fat	welf	th nu	ımbe	r is c	addeo	d to	We know: $\frac{\text{Sum of numbers}}{11} = 8$,	le 7 Fi
		thes	se n	umb	ers.	the o	ivera	iae o	fall	so Sum of numbers = 11×8	natics , Grad
				num	bors	is no	1 [°]	·900	hat	then $\frac{88+x}{12} = 11$. So $x = 12 \times 10^{-10}$	athen 2013
								1. **	nac	11 - 88	SA M enge
		is tr	ne t	wein	n nu	mbe	r :				AME Chall
Fiendish	37.	Ab	ath	fills	in 12	min	utes	if the	9	36 minutes	6,
		plug	g is	in. It	emp	oties	in 18	min	utes	Filling: In 1 minute $\frac{1}{12}$ of bath	e 200
		whe	en t	he to	ıp is	off. I	f the	tap i	is	fills. Emptying: In 1 minute $\frac{1}{2}$ of	alleng
		run	ninc	ana	d the	plua	is o	ut. h	wc	bath empties	ics Ch id
		long	a wi	ill it 1	take	to fil	l the	hatk	יי	Together: In 1 minute $\frac{1}{12}$ –	emat Roun
			3 11					Juli	••	$\frac{1}{18} = \frac{1}{36}$ of bath fills. So the	Math Final
										whole bath $\left(\frac{3}{36}\right)$ fills in <u>36</u>	/IESA ade 7
											AN Gra

Category	No.	Question	Answer (strategy)	Ref.
Fiendish	38.	The figure is a combination of four semi-circles, each with a radius of 3 cm. What is the area of the figure?	36 cm² The area of the semi-circles on the left and right side is equal to the area of a full circle. $\pi r^2 = \pi 3^2 =$ 28,27433 cm ² c The area of the square (see the sketch below) is $6 \times 6 =$ 36 cm ² . But we need the area of the square minus the area of the 2 semi-circles: 36 cm ² - 28,27433 cm ² = 7,725666 cm ² 28,27433 + 7,725666 = 36 cm ²	AMESA Mathematics Challenge 2001, Grade 7 Final Round
Fiendish	39.	A water tank is $\frac{7}{8}$ full. After 420 litres had been drawn from it, it is half full. How many litres does the tank hold when it is full?	1 120 litres $\frac{7}{8} - \frac{1}{2} = \frac{3}{8} = 420$ litres, so $\frac{1}{8} = 240$ litres $\div 3 = 140$ litres. So the full tank $= \frac{8}{8} = 140$ litres $\times 8 = 1120$ litres	AMESA Mathematics Challenge 2013, Grade 7

Category	No.	Question	Answer (strategy)	Ref.
Fiendish	40.	Two squares with lengths 4 cm	20 cm ²	
		and 6 cm respectively, partially	Let the overlapping region have an area of $x \text{ cm}^2$.	
		overlap as shown in the diagram.	Area of larger square is 36 cm^2 , So area $A = 36 - x$	
		What is the difference between	Area of smaller square is 16 cm^2 , so area $B = 16 - x$	pu
		shaded area A and shaded area	area A - area B = $(36 - x) - (16 - x) = 36 - x - 16 + x = 36$	al Rou
		B?	- 16 = 20	Z Fin
		BA		AMESA Mathematics Challenge 2013, Grad